Immunophenotypes Based on the Tumor Immune Microenvironment Allow for Unsupervised Penile Cancer Patient Stratification

Author:

Chu Chengbiao,Yao Kai,Lu Jiangli,Zhang Yijun,Chen Keming,Lu Jiabin,Zhang Chris ZhiyiORCID,Cao YunORCID

Abstract

The tumor immune microenvironment (TIME) plays an important role in penile squamous cell carcinoma (peSCC) pathogenesis. Here, the immunophenotype of the TIME in peSCC was determined by integrating the expression patterns of immune checkpoints (programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and Siglec-15) and the components of tumor-infiltrating lymphocytes, including CD8+ or Granzyme B+ T cells, FOXP3+ regulatory T cells, and CD68+ or CD206+ macrophages, in 178 patients. A high density of Granzyme B, FOXP3, CD68, CD206, PD-1, and CTLA-4 was associated with better disease-specific survival (DSS). The patients with diffuse PD-L1 tumor cell expression had worse prognoses than those with marginal or negative PD-L1 expression. Four immunophenotypes were identified by unsupervised clustering analysis, based on certain immune markers, which were associated with DSS and lymph node metastasis (LNM) in peSCC. There was no significant relationship between the immunophenotypes and high-risk human papillomavirus (hrHPV) infection. However, the hrHPV–positive peSCC exhibited a higher density of stromal Granzyme B and intratumoral PD-1 than the hrHPV–negative tumors (p = 0.049 and 0.002, respectively). In conclusion, the immunophenotypes of peSCC were of great value in predicting LNM and prognosis, and may provide support for clinical stratification management and immunotherapy intervention.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3