Abstract
Background: Tamoxifen (tam) is widely used to treat estrogen-positive breast cancer. However, cancer recurrence after chemotherapy remains a major obstacle to achieve good patient prognoses. In this study, we aimed to identify genes responsible for epigenetic regulation of tam resistance in breast cancer. Methods: Methylation microarray data were analyzed to screen highly hypomethylated genes in tam resistant (tamR) breast cancer cells. Quantitative RT-PCR, Western blot analysis, and immunohistochemical staining were used to quantify expression levels of genes in cultured cells and cancer tissues. Effects of matrix metalloproteinase-1 (MMP1) expression on cancer cell growth and drug resistance were examined through colony formation assays and flow cytometry. Xenografted mice were generated to investigate the effects of MMP1 on drug resistance in vivo. Results: MMP1 was found to be hypomethylated and overexpressed in tamR MCF-7 (MCF-7/tamR) cells and in tamR breast cancer tissues. Methylation was found to be inversely associated with MMP1 expression level in breast cancer tissues, and patients with lower MMP1 expression exhibited a better prognosis for survival. Downregulating MMP1 using shRNA induced tam sensitivity in MCF-7/tamR cells along with increased apoptosis. The xenografted MCF-7/tamR cells that stably expressed short hairpin RNA (shRNA) against MMP1 exhibited retarded tumor growth compared to that in cells expressing the control shRNA, which was further suppressed by tam. Conclusions: MMP1 can be upregulated through promoter hypomethylation in tamR breast cancer, functioning as a resistance driver gene. MMP1 can be a potential target to suppress tamR to achieve better prognoses of breast cancer patients.
Funder
National Research Foundation of Korea
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献