Temozolomide and the PARP Inhibitor Niraparib Enhance Expression of Natural Killer Group 2D Ligand ULBP1 and Gamma-Delta T Cell Cytotoxicity in Glioblastoma

Author:

Jones Amber B.1ORCID,Tuy Kaysaw1ORCID,Hawkins Cyntanna C.1ORCID,Quinn Colin H.23ORCID,Saad Joelle1ORCID,Gary Sam E.12ORCID,Beierle Elizabeth A.3ORCID,Ding Lei4,Rochlin Kate M.4,Lamb Lawrence S.4ORCID,Hjelmeland Anita B.1ORCID

Affiliation:

1. Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA

2. Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA

3. Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA

4. In8Bio, Inc., New York, NY 10118, USA

Abstract

Glioblastoma (GBM) is an immunologically cold tumor, but several immunotherapy-based strategies show promise, including the administration of ex vivo expanded and activated cytotoxic gamma delta T cells. Cytotoxicity is partially mediated through interactions with natural killer group 2D ligands (NKG2DL) on tumor cells. We sought to determine whether the addition of the blood–brain barrier penetrant PARP inhibitor niraparib to the standard of care DNA alkylator temozolomide (TMZ) could upregulate NKG2DL, thereby improving immune cell recognition. Changes in viability were consistent with prior publications as there was a growth inhibitory effect of the combination of TMZ and niraparib. However, decreases in viability did not always correlate with changes in NKG2DL mRNA. ULBP1/Mult-1 mRNA was increased with the combination therapy in comparison to either drug alone in two of the three cell types tested, even though viability was consistently decreased. mRNA expression correlated with protein levels and ULBP1/MULT-1 cell surface protein was significantly increased with TMZ and niraparib treatment in four of the five cell types tested. Gamma delta T cell-mediated cytotoxicity at a 10:1 effector-to-target ratio was significantly increased upon pretreatment of cells derived from a GBM PDX with TMZ and niraparib in comparison to the control or either drug alone. Together, these data demonstrate that the combination of PARP inhibition, DNA alkylation, and gamma delta T cell therapy has the potential for the treatment of GBM.

Funder

In8Bio, Inc.

University of Alabama at Birmingham

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3