Affiliation:
1. Department of Radiology, Peking University Third Hospital, Beijing 100191, China
2. Department of Informatics, King’s College London, London WC2B 4BG, UK
Abstract
We aim to investigate the feasibility and evaluate the performance of a ResNet-50 convolutional neural network (CNN) based on magnetic resonance imaging (MRI) in predicting primary tumor sites in spinal metastases. Conventional sequences (T1-weighted, T2-weighted, and fat-suppressed T2-weighted sequences) MRIs of spinal metastases patients confirmed by pathology from August 2006 to August 2019 were retrospectively analyzed. Patients were partitioned into non-overlapping sets of 90% for training and 10% for testing. A deep learning model using ResNet-50 CNN was trained to classify primary tumor sites. Top-1 accuracy, precision, sensitivity, area under the curve for the receiver-operating characteristic (AUC-ROC), and F1 score were considered as the evaluation metrics. A total of 295 spinal metastases patients (mean age ± standard deviation, 59.9 years ± 10.9; 154 men) were evaluated. Included metastases originated from lung cancer (n = 142), kidney cancer (n = 50), mammary cancer (n = 41), thyroid cancer (n = 34), and prostate cancer (n = 28). For 5-class classification, AUC-ROC and top-1 accuracy were 0.77 and 52.97%, respectively. Additionally, AUC-ROC for different sequence subsets ranged between 0.70 (for T2-weighted) and 0.74 (for fat-suppressed T2-weighted). Our developed ResNet-50 CNN model for predicting primary tumor sites in spinal metastases at MRI has the potential to help prioritize the examinations and treatments in case of unknown primary for radiologists and oncologists.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献