Imaging and Histopathological Analysis of Microvascular Angiogenesis in Photodynamic Therapy for Oral Cancer

Author:

Yang Tzu-Sen12345,Hsiao Yen-Chang6,Chiang Yu-Fan7,Chang Cheng-Jen15689

Affiliation:

1. Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan

2. International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan

3. School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan

4. Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan

5. TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan

6. Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City 33302, Taiwan

7. Medical School, University of Queensland, Saint Lucia, QLD 4072, Australia

8. Department of Plastic Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan

9. School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan

Abstract

The objective of this study is to use imaging and histopathological analysis to characterize and monitor microvascular responses to photodynamic therapy (PDT). In vivo chicken chorioallantoic membranes (CAMs) and a stimulated malignant oral lesions animal model were used to determine the blood flow and the biological activities of Photofrin® (2.5 mg/kg) exposed to different laser power densities at 630 nm. The vascular changes, the velocity of the blood flow, the speckle flow index (SFI) of fluorescence changes, and ultrastructure damage in the microvasculature before and after PDT were recorded. The subcellular localization of Photofrin® revealed satisfactory uptake throughout the cytoplasm of human red blood cells at 10 s and 20 s before PDT. The mean blood-flow velocities of the veins and arteries were 500 ± 40 and 1500 ± 100 μm/s, respectively. A significant decrease in the velocities of the blood flow in the veins and arteries was detected in the CAM model after PDT. The veins and arteries of CAMs, exposed to the power densities of 80, 100, and 120 mW/cm2, had average blood-flow velocities of 100 ± 20, 60 ± 10, and 0 μm/s and 300 ± 50, 150 ± 30, and 0 μm/s, respectively. In the stimulated malignant oral lesions animal model, the treated tumors exhibited hemorrhage and red blood cell extravasation after PDT. The oxyhemoglobin and total hemoglobin levels decreased, which resulted in a decrease in tissue oxygen saturation, while the deoxyhemoglobin levels increased. PDT using Photofrin® has the ability to cause the destruction of the targeted microvasculature under nonthermal mechanisms selectively.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3