NRK-ABMIL: Subtle Metastatic Deposits Detection for Predicting Lymph Node Metastasis in Breast Cancer Whole-Slide Images

Author:

Sajjad Usama1,Rezapour Mostafa1,Su Ziyu1,Tozbikian Gary H.2,Gurcan Metin N.1ORCID,Niazi M. Khalid Khan1

Affiliation:

1. Center for Biomedical Informatics, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA

2. Department of Pathology, The Ohio State University, Columbus, OH 43210, USA

Abstract

The early diagnosis of lymph node metastasis in breast cancer is essential for enhancing treatment outcomes and overall prognosis. Unfortunately, pathologists often fail to identify small or subtle metastatic deposits, leading them to rely on cytokeratin stains for improved detection, although this approach is not without its flaws. To address the need for early detection, multiple-instance learning (MIL) has emerged as the preferred deep learning method for automatic tumor detection on whole slide images (WSIs). However, existing methods often fail to identify some small lesions due to insufficient attention to small regions. Attention-based multiple-instance learning (ABMIL)-based methods can be particularly problematic because they may focus too much on normal regions, leaving insufficient attention for small-tumor lesions. In this paper, we propose a new ABMIL-based model called normal representative keyset ABMIL (NRK-ABMIL), which addresseses this issue by adjusting the attention mechanism to give more attention to lesions. To accomplish this, the NRK-ABMIL creates an optimal keyset of normal patch embeddings called the normal representative keyset (NRK). The NRK roughly represents the underlying distribution of all normal patch embeddings and is used to modify the attention mechanism of the ABMIL. We evaluated NRK-ABMIL on the publicly available Camelyon16 and Camelyon17 datasets and found that it outperformed existing state-of-the-art methods in accurately identifying small tumor lesions that may spread over a few patches. Additionally, the NRK-ABMIL also performed exceptionally well in identifying medium/large tumor lesions.

Funder

National Institutes of Health Trailblazer

Alliance Clinical Trials in Oncology

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference31 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3