Hypoxia-Driven TGFβ Modulation of Side Population Cells in Breast Cancer: The Potential Role of ERα

Author:

Mallini Paraskevi1,Chen Miaojuan2,Mahkamova Kamilla1,Lennard Thomas W. J.3,Pan Yue2,Wei Dan2,Stemke-Hale Katherine4,Kirby John A.5ORCID,Lash Gendie E.2ORCID,Meeson Annette1

Affiliation:

1. Biosciences Institute, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK

2. Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Jinsui Road, Tianhe, Guangzhou 510623, China

3. Northern Institute for Cancer Research, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

4. Department of Systems Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA

5. Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Abstract

Epithelial-to-mesenchymal transition (EMT) is known to be important in regulating the behaviour of cancer cells enabling them to acquire stem cell characteristics or by enhancing the stem cell characteristics of cancer stem cells, resulting in these cells becoming more migratory and invasive. EMT can be driven by a number of mechanisms, including the TGF-β1 signalling pathway and/or by hypoxia. However, these drivers of EMT differ in their actions in regulating side population (SP) cell behaviour, even within SPs isolated from the same tissue. In this study we examined CoCl2 exposure and TGF-β driven EMT on SP cells of the MDA-MB-231 and MCF7 breast cancer cell lines. Both TGF-β1 and CoCl2 treatment led to the depletion of MDA-MB-231 SP. Whilst TGF-β1 treatment significantly reduced the MCF7 SP cells, CoCl2 exposure led to a significant increase. Single cell analysis revealed that CoCl2 exposure of MCF7 SP leads to increased expression of ABCG2 and HES1, both associated with multi-drug resistance. We also examined the mammosphere forming efficiency in response to CoCl2 exposure in these cell lines, and saw the same effect as seen with the SP cells. We suggest that these contrasting effects are due to ERα expression and the inversely correlated expression of TGFB-RII, which is almost absent in the MCF7 cells. Understanding the EMT-mediated mechanisms of the regulation of SP cells could enable the identification of new therapeutic targets in breast cancer.

Funder

RVI Breast Cancer Appeal, Royal Victoria Infirmary

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3