REV7 in Cancer Biology and Management

Author:

Murakumo Yoshiki1,Sakurai Yasutaka1,Kato Takuya1,Hashimoto Hiroshi2,Ichinoe Masaaki1

Affiliation:

1. Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Japan

2. School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan

Abstract

DNA repair and cell cycle regulation are potential biological fields to develop molecular targeting therapies for cancer. Human REV7 was originally discovered as a homologous molecule to yeast Rev7, which is involved in DNA damage response and mutagenesis, and as the second homolog of yeast Mad2, involved in the spindle assembly checkpoint. Although REV7 principally functions in the fields of DNA repair and cell cycle regulation, many binding partners of REV7 have been identified using comprehensive analyses in the past decade, and the significance of REV7 is expanding in various other biological fields, such as gene transcription, epigenetics, primordial germ cell survival, neurogenesis, intracellular signaling, and microbial infection. In addition, the clinical significance of REV7 has been demonstrated in studies using human cancer tissues, and investigations in cancer cell lines and animal models have revealed the greater impacts of REV7 in cancer biology, which makes it an attractive target molecule for cancer management. This review focuses on the functions of REV7 in human cancer and discusses the utility of REV7 for cancer management with a summary of the recent development of inhibitors targeting REV7.

Funder

Uehara Memorial Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3