DNA FISH Diagnostic Assay on Cytological Samples of Thyroid Follicular Neoplasms

Author:

Vielh PhilippeORCID,Balogh Zsofia,Suciu Voichita,Richon CatherineORCID,Job BastienORCID,Meurice Guillaume,Valent Alexander,Lacroix Ludovic,Marty Virginie,Motte Nelly,Dessen PhilippeORCID,Caillou Bernard,Ghuzlan Abir,Bidart Jean-Michel,Lazar Vladimir,Hofman PaulORCID,Scoazec Jean-Yves,El-Naggar Adel,Schlumberger Martin

Abstract

Although fine-needle aspiration cytology (FNAC) is helpful in determining whether thyroid nodules are benign or malignant, this distinction remains a cytological challenge in follicular neoplasms. Identification of genomic alterations in cytological specimens with direct and routine techniques would therefore have great clinical value. A series of 153 cases consisting of 72 and 81 histopathologically confirmed classic follicular adenomas (cFAs) and classic follicular thyroid carcinomas (cFTCs), respectively, was studied by means of different molecular techniques in three different cohorts of patients (pts). In the first cohort (training set) of 66 pts, three specific alterations characterized by array comparative genomic hybridization (aCGH) were exclusively found in half of cFTCs. These structural abnormalities corresponded to losses of 1p36.33-35.1 and 22q13.2-13.31, and gain of whole chromosome X. The second independent cohort (validation set) of 60 pts confirmed these data on touch preparations of frozen follicular neoplasms by triple DNA fluorescent in situ hybridization using selected commercially available probes. The third cohort, consisting of 27 archived cytological samples from an equal number of pts that had been obtained for preoperative FNAC and morphologically classified as and histologically verified to be follicular neoplasms, confirmed our previous findings and showed the feasibility of the DNA FISH (DNA fluorescent in situ hybridization) assay. All together, these data suggest that our triple DNA FISH diagnostic assay may detect 50% of cFTCs with a specificity higher than 98% and be useful as a low-cost adjunct to cytomorphology to help further classify follicular neoplasms on already routinely stained cytological specimens.

Funder

Institut National Du Cancer

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3