Mannose-Binding Lectin 2 as a Potential Therapeutic Target for Hepatocellular Carcinoma: Multi-Omics Analysis and Experimental Validation

Author:

Liao Hangyu1,Yang Jun1,Xu Yuyan1,Xie Juncheng1,Li Ke12,Chen Kunling1,Pei Jingyuan1,Luo Qiong13,Pan Mingxin1

Affiliation:

1. General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China

2. Department of General Surgery, The First Hospital of Changsha, Changsha 410000, China

3. Department of General Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang 421000, China

Abstract

Mannose-binding lectin 2 (MBL2), a member of the multimeric lectin family, is crucial in immune regulation and tumor development. MBL2 gene polymorphisms are associated with the risk and prognosis of various tumors, including hepatocellular carcinoma (HCC). Its functional role in HCC remains largely unclear. In this study, we aimed to identify whether MBL2 is a key regulator and a potential therapeutic target for HCC. A bioinformatics analysis revealed close relationships among MBL2 downregulation, the tumor-associated proliferation and metastasis pathway, and tumor immunosuppressive microenvironments. Lower expression of MBL2 in HCC patients was linked to an unfavorable prognosis. A cell counting kit-8 assay, colony formation assay, transwell migration assay, and wound healing assay further confirmed that the overexpression of MBL2 could directly inhibit the proliferation and metastasis of HCC. Moreover, MBL2 expression was regulated by miR-34c-3p, as confirmed by the dual-luciferase reporter assay, thereby demonstrating tumor progression in HCC cells. Thus, our study offers the first comprehensive confirmation of the role of MBL2 in the development of HCC through multi-omics analysis and experimental validation. Furthermore, miR-34c-3p was found to be an upstream mechanism of the downregulation of MBL2 expression and could be a promising therapeutic target, expanding treatment options for patients with HCC.

Funder

National Natural Science Foundation of China

Science and Health Joint Program of the Hunan Natural Science Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3