K-RAS Associated Gene-Mutation-Based Algorithm for Prediction of Treatment Response of Patients with Subtypes of Breast Cancer and Especially Triple-Negative Cancer

Author:

Johnson Heather,Ali Amjad,Zhang Xuhui,Wang TianyanORCID,Simoulis Athanasios,Wingren Anette GjörloffORCID,Persson Jenny L.ORCID

Abstract

Purpose: There is an urgent need for developing new biomarker tools to accurately predict treatment response of breast cancer, especially the deadly triple-negative breast cancer. We aimed to develop gene-mutation-based machine learning (ML) algorithms as biomarker classifiers to predict treatment response of first-line chemotherapy with high precision. Methods: Random Forest ML was applied to screen the algorithms of various combinations of gene mutation profiles of primary tumors at diagnosis using a TCGA Cohort (n = 399) with up to 150 months follow-up as a training set and validated in a MSK Cohort (n = 807) with up to 220 months follow-up. Subtypes of breast cancer including triple-negative and luminal A (ER+, PR+ and HER2−) were also assessed. The predictive performance of the candidate algorithms as classifiers was further assessed using logistic regression, Kaplan–Meier progression-free survival (PFS) plot, and univariate/multivariate Cox proportional hazard regression analyses. Results: A novel algorithm termed the 12-Gene Algorithm based on mutation profiles of KRAS, PIK3CA, MAP3K1, MAP2K4, PTEN, TP53, CDH1, GATA3, KMT2C, ARID1A, RunX1, and ESR1, was identified. The performance of this algorithm to distinguish non-progressed (responder) vs. progressed (non-responder) to treatment in the TCGA Cohort as determined using AUC was 0.96 (95% CI 0.94–0.98). It predicted progression-free survival (PFS) with hazard ratio (HR) of 21.6 (95% CI 11.3–41.5) (p < 0.0001) in all patients. The algorithm predicted PFS in the triple-negative subgroup with HR of 19.3 (95% CI 3.7–101.3) (n = 42, p = 0.000). The 12-Gene Algorithm was validated in the MSK Cohort with a similar AUC of 0.97 (95% CI 0.96–0.98) to distinguish responder vs. non-responder patients, and had a HR of 18.6 (95% CI 4.4–79.2) to predict PFS in the triple-negative subgroup (n = 75, p < 0.0001). Conclusions: The novel 12-Gene algorithm based on multitude gene-mutation profiles identified through ML has a potential to predict breast cancer treatment response to therapies, especially in triple-negative subgroups patients, which may assist personalized therapies and reduce mortality.

Funder

the Swedish Cancer Society

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference30 articles.

1. The natural history of hormone receptor-positive breast cancer;Lim;Oncology,2012

2. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications;Sørlie;Proc. Natl. Acad. Sci. USA,2001

3. Molecular portraits of human breast tumours;Perou;Nature,2000

4. Triple-Negative Breast Cancer;Foulkes;N. Engl. J. Med.,2010

5. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer;Solzak;NPJ Breast Cancer,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3