A Novel Risk Score Model of Lactate Metabolism for Predicting over Survival and Immune Signature in Lung Adenocarcinoma

Author:

Jiang Zhou,Luo Yongzhong,Zhang Lemeng,Li Haitao,Pan Changqie,Yang Hua,Cheng Tianli,Chen Jianhua

Abstract

Background: The role of lactate acid in tumor progression was well proved. Recently, it was found that lactate acid accumulation induced an immunosuppressive microenvironment. However, these results were based on a single gene and it was unclear that lactate acid genes were associated with immunotherapy and able to predict overall survival. Methods: Genes and survival data were acquired from TCGA, GEO and GENECARDS. PCA and TSNE were used to distinguish sample types according to lactate metabolism-associated gene expression. A Wilcox-test examined the expression differences between normal and tumor samples. The distribution in chromatin and mutant levels were displayed by Circo and MAfTools. The lactate metabolism-associated gene were divided into categories by consistent clustering and visualized by Cytoscape. Immune cell infiltration was evaluated by CIBERSORT and LM22 matrix. Enrichment analysis was performed by GSVA. We used the ConsensusClusterPlus package for consistent cluster analysis. A prognostic model was constructed by Univariate Cox regression and Lasso regression analysis. Clinical specimens were detected their expression of genes in model by IHC. Results: Most lactate metabolism-associated gene were significantly differently expressed between normal and tumor samples. There was a strong correlation between the expression of lactate metabolism-associated gene and the abundance of immune cells. We divided them into two clusters (lactate.cluster A,B) with significantly different survival. The two clusters showed a difference in signal, immune cells, immune signatures, chemokines, and clinical features. We identified 162 differential genes from the two clusters, by which the samples were divided into three categories (gene.cluster A,B,C). They also showed a difference in OS and immune infiltration. Finally, a risk score model that was composed of six genes was constructed. There was significant difference in the survival between the high and low risk groups. ROC curves of 1, 3, 5, and 10 years verified the model had good predictive efficiency. Gene expression were correlated with ORR and PFS in patients who received anti-PD-1/L1. Conclusion: The lactate metabolism-associated genes in LUAD were significantly associated with OS and immune signatures. The risk scoring model that was constructed by us was able to well identify and predict OS and were related with anti-PD-1/L1 therapy outcome.

Funder

Natural Science Foundation of Science and Technology Bureau, Changsha

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3