Mapping the Oncological Basis Dataset to the Standardized Vocabularies of a Common Data Model: A Feasibility Study

Author:

Carus Jasmin123ORCID,Trübe Leona1,Szczepanski Philip2,Nürnberg Sylvia1,Hees Hanna1,Bartels Stefan3,Nennecke Alice2ORCID,Ückert Frank1,Gundler Christopher1

Affiliation:

1. Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany

2. Hamburg Cancer Registry, Authority for Science, Research, Equality, and Districts, 20097 Hamburg, Germany

3. University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany

Abstract

In their joint effort against cancer, all involved parties within the German healthcare system are obligated to report diagnostics, treatments, progression, and follow-up information for tumor patients to the respective cancer registries. Given the federal structure of Germany, the oncological basis dataset (oBDS) operates as the legally required national standard for oncological reporting. Unfortunately, the usage of various documentation software solutions leads to semantic and technical heterogeneity of the data, complicating the establishment of research networks and collective data analysis. Within this feasibility study, we evaluated the transferability of all oBDS characteristics to the standardized vocabularies, a metadata repository of the observational medical outcomes partnership (OMOP) common data model (CDM). A total of 17,844 oBDS expressions were mapped automatically or manually to standardized concepts of the OMOP CDM. In a second step, we converted real patient data retrieved from the Hamburg Cancer Registry to the new terminologies. Given our pipeline, we transformed 1773.373 cancer-related data elements to the OMOP CDM. The mapping of the oBDS to the standardized vocabularies of the OMOP CDM promotes the semantic interoperability of oncological data in Germany. Moreover, it allows the participation in network studies of the observational health data sciences and informatics under the usage of federated analysis beyond the level of individual countries.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference30 articles.

1. (2023, May 24). European Cancer Mortality Predictions for the Year 2023 with Focus on Lung Cancer—Annals of Oncology. Available online: https://www.annalsofoncology.org/article/S0923-7534(23)00048-0/fulltext.

2. (2023, June 05). ADT/GEKID Basisdatensatz [Engl. Basis Dataset]. Available online: https://www.gekid.de/adt-gekid-basisdatensatz.

3. Stegmaier, C., Hentschel, S., Hofstädter, F., Katalinic, A., Tillack, A., and Klinkhammer-Schalke, M. (2022, November 14). Das Manual der Krebsregistrierung. [Engl. The Cancer Registration Manual]. Available online: https://www.gekid.de/manual-der-krebsregistrierung.

4. Klinisch-epidemiologische Krebsregistrierung in Deutschland;Schmidt;Pathologe,2016

5. Epidemiologische Krebsregistrierung in Deutschland: Eine beeindruckende Forschungsressource;Pigeot;Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3