A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study

Author:

Coada Camelia Alexandra1ORCID,Santoro Miriam2ORCID,Zybin Vladislav3,Di Stanislao Marco14,Paolani Giulia2,Modolon Cecilia3,Di Costanzo Stella4,Genovesi Lucia14,Tesei Marco4ORCID,De Leo Antonio15ORCID,Ravegnini Gloria6ORCID,De Biase Dario56ORCID,Morganti Alessio Giuseppe7,Lovato Luigi3ORCID,De Iaco Pierandrea14,Strigari Lidia2ORCID,Perrone Anna Myriam14ORCID

Affiliation:

1. Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy

2. Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

3. Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

4. Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

5. Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

6. Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy

7. Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

Abstract

Background: Current prognostic models lack the use of pre-operative CT images to predict recurrence in endometrial cancer (EC) patients. Our study aimed to investigate the potential of radiomic features extracted from pre-surgical CT scans to accurately predict disease-free survival (DFS) among EC patients. Methods: Contrast-Enhanced CT (CE-CT) scans from 81 EC cases were used to extract the radiomic features from semi-automatically contoured volumes of interest. We employed a 10-fold cross-validation approach with a 6:4 training to test set and utilized data augmentation and balancing techniques. Univariate analysis was applied for feature reduction leading to the development of three distinct machine learning (ML) models for the prediction of DFS: LASSO-Cox, CoxBoost and Random Forest (RFsrc). Results: In the training set, the ML models demonstrated AUCs ranging from 0.92 to 0.93, sensitivities from 0.96 to 1.00 and specificities from 0.77 to 0.89. In the test set, AUCs ranged from 0.86 to 0.90, sensitivities from 0.89 to 1.00 and specificities from 0.73 to 0.90. Patients classified as having a high recurrence risk prediction by ML models exhibited significantly worse DSF (p-value < 0.001) across all models. Conclusions: Our findings demonstrate the potential of radiomics in predicting EC recurrence. While further validation studies are needed, our results underscore the promising role of radiomics in forecasting EC outcomes.

Funder

Fondazione Cassa di Risparmio di Bologna

Ricerca Corrente, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna Italy

European Union

Ministero della salute

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference73 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer J. Clin.,2021

2. Risk Factors for Endometrial Cancer: An Umbrella Review of the Literature;Raglan;Int. J. Cancer,2019

3. Adjuvant Therapy for Endometrial Cancer;DeLeon;J. Gynecol. Oncol.,2014

4. Substantial Lymph-Vascular Space Invasion (LVSI) Is a Significant Risk Factor for Recurrence in Endometrial Cancer--A Pooled Analysis of PORTEC 1 and 2 Trials;Bosse;Eur. J. Cancer Oxf. Engl. 1990,2015

5. New Classification of Endometrial Cancers: The Development and Potential Applications of Genomic-Based Classification in Research and Clinical Care;Talhouk;Gynecol. Oncol. Res. Pract.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3