Ability of 18F-FDG Positron Emission Tomography Radiomics and Machine Learning in Predicting KRAS Mutation Status in Therapy-Naive Lung Adenocarcinoma

Author:

Zhang Ruiyun12,Shi Kuangyu3,Hohenforst-Schmidt Wolfgang4,Steppert Claus5,Sziklavari Zsolt6,Schmidkonz Christian7,Atzinger Armin7,Hartmann Arndt2,Vieth Michael1,Förster Stefan8910

Affiliation:

1. Institute of Pathology, Medizincampus Oberfranken, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, 95445 Bayreuth, Germany

2. Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

3. Department of Nuclear Medicine, Inselspital Bern, 3010 Bern, Switzerland

4. Department of Pneumology, Sana Klinikum Hof, 95032 Hof, Germany

5. Department of Pneumology, REGIOMED Klinikum Coburg, 96450 Coburg, Germany

6. Department of Thoracic Surgery, Klinikum Coburg, 96450 Coburg, Germany

7. Department of Nuclear Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

8. Department of Nuclear Medicine, Klinikum Bayreuth, 95445 Bayreuth, Germany

9. Medizincampus Oberfranken, Universitätsklinikum Erlangen, 95445 Bayreuth, Germany

10. Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universitaet Muenchen, 81675 München, Germany

Abstract

Objective: Considering the essential role of KRAS mutation in NSCLC and the limited experience of PET radiomic features in KRAS mutation, a prediction model was built in our current analysis. Our model aims to evaluate the status of KRAS mutants in lung adenocarcinoma by combining PET radiomics and machine learning. Method: Patients were retrospectively selected from our database and screened from the NSCLC radiogenomic dataset from TCIA. The dataset was randomly divided into three subgroups. Two open-source software programs, 3D Slicer and Python, were used to segment lung tumours and extract radiomic features from 18F-FDG-PET images. Feature selection was performed by the Mann–Whitney U test, Spearman’s rank correlation coefficient, and RFE. Logistic regression was used to build the prediction models. AUCs from ROCs were used to compare the predictive abilities of the models. Calibration plots were obtained to examine the agreements of observed and predictive values in the validation and testing groups. DCA curves were performed to check the clinical impact of the best model. Finally, a nomogram was obtained to present the selected model. Results: One hundred and nineteen patients with lung adenocarcinoma were included in our study. The whole group was divided into three datasets: a training set (n = 96), a validation set (n = 11), and a testing set (n = 12). In total, 1781 radiomic features were extracted from PET images. One hundred sixty-three predictive models were established according to each original feature group and their combinations. After model comparison and selection, one model, including wHLH_fo_IR, wHLH_glrlm_SRHGLE, wHLH_glszm_SAHGLE, and smoking habits, was validated with the highest predictive value. The model obtained AUCs of 0.731 (95% CI: 0.619~0.843), 0.750 (95% CI: 0.248~1.000), and 0.750 (95% CI: 0.448~1.000) in the training set, the validation set and the testing set, respectively. Results from calibration plots in validation and testing groups indicated that there was no departure between observed and predictive values in the two datasets (p = 0.377 and 0.861, respectively). Conclusions: Our model combining 18F-FDG-PET radiomics and machine learning indicated a good predictive ability of KRAS status in lung adenocarcinoma. It may be a helpful non-invasive method to screen the KRAS mutation status of heterogenous lung adenocarcinoma before selected biopsy sampling.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3