Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells

Author:

Chang Sukkum Ngullie1ORCID,Kang Sun Chul1

Affiliation:

1. Department of Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea

Abstract

Colorectal cancer (CRC) was the second most commonly diagnosed cancer worldwide and the second most common cause of cancer-related deaths in Europe in 2020. After CRC patients’ recovery, in many cases a patient’s tumor returns and develops chemoresistance, which has remained a major challenge worldwide. We previously published our novel findings on the role of DA in inhibiting the activity of GDH1 using in silico and enzymatic assays. No studies have been conducted so far to explain the inhibitory role of DA against glutamate dehydrogenase in MDR-CRC cells. We developed a multidrug-resistant colorectal cancer cell line, HCT-116MDR, after treatment with cisplatin and 5-fluorouracil. We confirmed the MDR phenotype by evaluating the expression of MDR1, ABCB5, extracellular vesicles, polyploidy, DNA damage response markers and GDH1 in comparison with parental HCT-116WT (HCT-116 wild type). Following confirmation, we determined the IC50 and performed clonogenic assay for the efficacy of decursinol angelate (DA) against HCT-116MDR (HCT-116 multidrug resistant). Subsequently, we evaluated the novel interactions of DA with GDH1 and the expression of important markers regulating redox homeostasis and cell death. DA treatment markedly downregulated the expression of GDH1 at 50 and 75 μM after 36 h, which directly correlated with reduced expression of the Krebs cycle metabolites α-ketoglutarate and fumarate. We also observed a systematic dose-dependent downregulation of MDR1, ABCB5, TERT, ERCC1 and γH2AX. Similarly, the expression of important antioxidant markers was also downregulated. The markers for intrinsic apoptosis were notably upregulated in a dose-dependent manner. The results were further validated by flow cytometry and TUNEL assay. Additionally, GDH1 knockdown on both HCT-116WT and HCT-116MDR corresponded to a decreased expression of γH2AX, catalase, SOD1 and Gpx-1, and an eventual increase in apoptosis markers. In conclusion, inhibition of GDH1 increased ROS production, decreased cell proliferation and increased cell death.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference53 articles.

1. American Cancer Society Colorectal Cancer Facts & Figures 2020–2022. Atlanta Am. Cancer Soc., 2020.

2. International Agency for Research on Cancer, WHO (2021, January 11). Global Cancer Observatory. Available online: https://gco.iarc.fr.

3. Cancer Statistics, 2022;Siegel;CA Cancer J. Clin.,2022

4. Evaluation of Decursin and Its Isomer Decursinol Angelate as Potential Inhibitors of Human Glutamate Dehydrogenase Activity through in Silico and Enzymatic Assay Screening;Chang;Comput. Biol. Med.,2022

5. Adjuvant Therapy in Colon Cancer—What, When and How?;Chau;Ann. Oncol.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3