Connected-SegNets: A Deep Learning Model for Breast Tumor Segmentation from X-ray Images

Author:

Alkhaleefah MohammadORCID,Tan Tan-HsuORCID,Chang Chuan-Hsun,Wang Tzu-Chuan,Ma Shang-ChihORCID,Chang Lena,Chang Yang-LangORCID

Abstract

Inspired by Connected-UNets, this study proposes a deep learning model, called Connected-SegNets, for breast tumor segmentation from X-ray images. In the proposed model, two SegNet architectures are connected with skip connections between their layers. Moreover, the cross-entropy loss function of the original SegNet has been replaced by the intersection over union (IoU) loss function in order to make the proposed model more robust against noise during the training process. As part of data preprocessing, a histogram equalization technique, called contrast limit adapt histogram equalization (CLAHE), is applied to all datasets to enhance the compressed regions and smooth the distribution of the pixels. Additionally, two image augmentation methods, namely rotation and flipping, are used to increase the amount of training data and to prevent overfitting. The proposed model has been evaluated on two publicly available datasets, specifically INbreast and the curated breast imaging subset of digital database for screening mammography (CBIS-DDSM). The proposed model has also been evaluated using a private dataset obtained from Cheng Hsin General Hospital in Taiwan. The experimental results show that the proposed Connected-SegNets model outperforms the state-of-the-art methods in terms of Dice score and IoU score. The proposed Connected-SegNets produces a maximum Dice score of 96.34% on the INbreast dataset, 92.86% on the CBIS-DDSM dataset, and 92.25% on the private dataset. Furthermore, the experimental results show that the proposed model achieves the highest IoU score of 91.21%, 87.34%, and 83.71% on INbreast, CBIS-DDSM, and the private dataset, respectively.

Funder

Ministry of Science and Technology

National Taipei University of Technology and Cheng Hsin General Hospital

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A unified 2D medical image segmentation network (SegmentNet) through distance-awareness and local feature extraction;Biocybernetics and Biomedical Engineering;2024-07

2. Computer-Aided Detection and Diagnosis of Breast Cancer: a Review;ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal;2024-06-05

3. Improving breast cancer prediction via progressive ensemble and image enhancement;Multimedia Tools and Applications;2024-05-03

4. AI in breast imaging: Applications, challenges, and future research;Computational Intelligence and Modelling Techniques for Disease Detection in Mammogram Images;2024

5. An Efficient Breast Cancer Segmentation System based on Deep Learning Techniques;Engineering, Technology & Applied Science Research;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3