Abstract
It is known that miRNA-378a-3p (miR-378) could be induced by eicosapentaenoic acid (EPA), an omega-3 fatty acid. Herein, we first demonstrated how miR-378 exerts anti-prostate cancer (PCa) actions by influencing multiple target genes, including KLK2, KLK4, KLK6, and KLK14, which are implicated in PCa development, cell proliferation, and cell survival. Furthermore, these genes also correlate with androgen and mTOR signaling transduction, and are considered pivotal pathways for the onset and progression of PCa. In total, four PCa cell lines and eight pairing tissues (tumor vs. normal) from clinical PCa patients were included in the current study. The results showed high significance after EPA induced tumor cells containing higher expression levels of miR-378, and led the PCa cells having low cell viabilities, and they progressed to apoptosis when compared with normal prostate cells (p < 0.001). The findings indicated that EPA might become a potential therapy for PCa, especially because it is derived from the components of natural fish oil; it may prove to be a great help for solving the problem of castration-resistant prostate cancer (CRPC).
Funder
National Taipei University of Technology
Chang Gung Memorial Hospital
Ministry of Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献