Development and Validation of a Predictive Model for Metastatic Melanoma Patients Treated with Pembrolizumab Based on Automated Analysis of Whole-Body [18F]FDG PET/CT Imaging and Clinical Features

Author:

Dirks Ine12ORCID,Keyaerts Marleen3ORCID,Dirven Iris4ORCID,Neyns Bart4ORCID,Vandemeulebroucke Jef125ORCID

Affiliation:

1. Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

2. IMEC, 3001 Leuven, Belgium

3. Department of Nuclear Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

4. Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

5. Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

Abstract

Background: Antibodies that inhibit the programmed cell death protein 1 (PD-1) receptor offer a significant survival benefit, potentially cure (i.e., durable disease-free survival following treatment discontinuation), a substantial proportion of patients with advanced melanoma. Most patients however fail to respond to such treatment or acquire resistance. Previously, we reported that baseline total metabolic tumour volume (TMTV) determined by whole-body [18F]FDG PET/CT was independently correlated with survival and able to predict the futility of treatment. Manual delineation of [18F]FDG-avid lesions is however labour intensive and not suitable for routine use. A predictive survival model is proposed based on automated analysis of baseline, whole-body [18F]FDG images. Methods: Lesions were segmented on [18F]FDG PET/CT using a deep-learning approach and derived features were investigated through Kaplan–Meier survival estimates with univariate logrank test and Cox regression analyses. Selected parameters were evaluated in multivariate Cox survival regressors. Results: In the development set of 69 patients, overall survival prediction based on TMTV, lactate dehydrogenase levels and presence of brain metastases achieved an area under the curve of 0.78 at one year, 0.70 at two years. No statistically significant difference was observed with respect to using manually segmented lesions. Internal validation on 31 patients yielded scores of 0.76 for one year and 0.74 for two years. Conclusions: Automatically extracted TMTV based on whole-body [18F]FDG PET/CT can aid in building predictive models that can support therapeutic decisions in patients treated with immune-checkpoint blockade.

Funder

Innoviris

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3