PKCθ Regulates Pituitary Adenoma Bone Invasion by Activating Osteoclast in NF-κB/IL-1β-Dependent Manner

Author:

Wang Quanji1,Lei Zhuowei2,Wang Zihan1,Jiang Qian1,Zhang Zhuo1,Liu Xiaojin1ORCID,Xing Biao1,Li Sihan1,Guo Xiang1,Liu Yanchao1,Li Xingbo1,Shu Kai1,Zhang Huaqiu1ORCID,Huang Yimin1,Lei Ting1ORCID

Affiliation:

1. Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China

2. Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China

Abstract

Background: Pituitary adenoma (PA) bone invasion results in adverse outcomes, such as reduced rates of complete surgical resection and biochemical remission as well as increased recurrence rates, though few studies have been conducted. Methods: We collected clinical specimens of PAs for staining and statistical analysis. Evaluation of the ability of PA cells to induce monocyte–osteoclast differentiation by coculturing PA cells with RAW264.7 in vitro. An in vivo model of bone invasion was used to simulate the process of bone erosion and evaluate the effect of different interventions in alleviating bone invasion. Results: We found an overactivation of osteoclasts in bone-invasive PAs and concomitant aggregation of inflammatory factors. Furthermore, activation of PKCθ in PAs was established as a central signaling promoting PA bone invasion through the PKCθ/NF-κB/IL-1β pathway. By inhibiting PKCθ and blocking IL1β, we were able to significantly reverse bone invasion in an in vivo study. Meanwhile, we also found that celastrol, as a natural product, can obviously reduce the secretion of IL-1β as well as alleviate the progression of bone invasion. Conclusions: By activating the PKCθ/NF-κB/IL-1β pathway, pituitary tumors are able to induce monocyte–osteoclast differentiation in a paracrine manner and promote bone invasion, which can be alleviated by celastrol.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3