Qualitative and Quantitative Performance of Magnetic Resonance Image Compilation (MAGiC) Method: An Exploratory Analysis for Head and Neck Imaging

Author:

Konar Amaresha Shridhar,Paudyal Ramesh,Shah Akash Deelip,Fung Maggie,Banerjee Suchandrima,Dave Abhay,Lee Nancy,Hatzoglou Vaios,Shukla-Dave Amita

Abstract

The present exploratory study investigates the performance of a new, rapid, synthetic MRI method for diagnostic image quality assessment and measurement of relaxometry metric values in head and neck (HN) tumors and normal-appearing masseter muscle. The multi-dynamic multi-echo (MDME) sequence was used for data acquisition, followed by synthetic image reconstruction on a 3T MRI scanner for 14 patients (3 untreated and 11 treated). The MDME enables absolute quantification of physical tissue properties, including T1 and T2, with a shorter scan time than the current state-of-the-art methods used for relaxation measurements. The vendor termed the combined package MAGnetic resonance imaging Compilation (MAGiC). In total, 48 regions of interest (ROIs) were analyzed, drawn on normal-appearing masseter muscle and tumors in the HN region. Mean T1 and T2 values obtained from normal-appearing muscle were 880 ± 52 ms and 46 ± 3 ms, respectively. Mean T1 and T2 values obtained from tumors were 1930 ± 422 ms and 77 ± 13 ms, respectively, for the untreated group, 1745 ± 410 ms and 107 ± 61 ms, for the treated group. A total of 1552 images from both synthetic MRI and conventional clinical imaging were assessed by the radiologists to provide the rating for T1w and T2w image contrasts. The synthetically generated qualitative T2w images were acceptable and comparable to conventional diagnostic images (93% acceptability rating for both). The acceptability ratings for MAGiC-generated T1w, and conventional images were 64% and 100%, respectively. The benefit of MAGiC in HN imaging is twofold, providing relaxometry maps in a clinically feasible time and the ability to generate a different combination of contrast images in a single acquisition.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3