Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma

Author:

Kasamatsu Atsushi1ORCID,Nozaki Ryunosuke1,Kawasaki Kohei2,Saito Tomoaki2,Minemura Chikashi3ORCID,Seki Naohiko4ORCID,Moss Joel5,Uzawa Katsuhiro12ORCID

Affiliation:

1. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan

2. Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670, Chiba, Japan

3. Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Tokorozawa 359-8513, Saitama, Japan

4. Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba-shi 260-8670, Chiba, Japan

5. Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA

Abstract

microRNAs (miRs) function in cancer progression as post-transcriptional regulators. We previously reported that endogenous circular RNAs (circRNAs) function as efficient miR sponges and could act as novel gene regulators in oral squamous cell carcinoma (OSCC). In this study, we carried out cellular and luciferase reporter assays to examine competitive inhibition of miR-1269a, which is upregulated expression in several cancers, by circRNA-1269a, a synthetic circRNA that contains miR-1269a binding sequences. We also used data-independent acquisition (DIA) proteomics and in silico analyses to determine how circRNA-1269a treatment affects molecules downstream of miR-1269a. First, we confirmed the circularization of the linear miR-1269a binding site sequence using RT-PCR with divergent/convergent primers and direct sequencing of the head-to-tail circRNA junction point. In luciferase reporter and cellular functional assays, circRNA-1269a significantly reduced miR-1269a function, leading to a significant decrease in cell proliferation and migration. DIA proteomics and gene set enrichment analysis of OSCC cells treated with circRNA-1269a indicated high differential expression for 284 proteins that were mainly enriched in apoptosis pathways. In particular, phospholipase C gamma 2 (PLCG2), which is related to OSCC clinical stage and overall survival, was affected by the circRNA-1269a/miR-1269a axis. Taken together, synthetic circRNA-1269a inhibits tumor progression via miR-1269a and its downstream targets, indicating that artificial circRNAs could represent an effective OSCC therapeutic.

Funder

JSPS KAKENHI

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3