Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer

Author:

Jang Hyun-Jong1ORCID,Go Jai-Hyang2,Kim Younghoon3ORCID,Lee Sung Hak3ORCID

Affiliation:

1. Department of Physiology, CMC Institute for Basic Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

2. Department of Pathology, Dankook University College of Medicine, Cheonan 31116, Republic of Korea

3. Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

Abstract

Diagnosing primary liver cancers, particularly hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), is a challenging and labor-intensive process, even for experts, and secondary liver cancers further complicate the diagnosis. Artificial intelligence (AI) offers promising solutions to these diagnostic challenges by facilitating the histopathological classification of tumors using digital whole slide images (WSIs). This study aimed to develop a deep learning model for distinguishing HCC, CC, and metastatic colorectal cancer (mCRC) using histopathological images and to discuss its clinical implications. The WSIs from HCC, CC, and mCRC were used to train the classifiers. For normal/tumor classification, the areas under the curve (AUCs) were 0.989, 0.988, and 0.991 for HCC, CC, and mCRC, respectively. Using proper tumor tissues, the HCC/other cancer type classifier was trained to effectively distinguish HCC from CC and mCRC, with a concatenated AUC of 0.998. Subsequently, the CC/mCRC classifier differentiated CC from mCRC with a concatenated AUC of 0.995. However, testing on an external dataset revealed that the HCC/other cancer type classifier underperformed with an AUC of 0.745. After combining the original training datasets with external datasets and retraining, the classification drastically improved, all achieving AUCs of 1.000. Although these results are promising and offer crucial insights into liver cancer, further research is required for model refinement and validation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3