Obatoclax and Paclitaxel Synergistically Induce Apoptosis and Overcome Paclitaxel Resistance in Urothelial Cancer Cells

Author:

Jiménez-Guerrero Rocío,Gasca Jessica,Flores M.,Pérez-Valderrama Begoña,Tejera-Parrado Cristina,Medina Rafael,Tortolero María,Romero Francisco,Japón Miguel,Sáez CarmenORCID

Abstract

Paclitaxel is a treatment option for advanced or metastatic bladder cancer after the failure of first-line cisplatin and gemcitabine, although resistance limits its clinical benefits. Mcl-1 is an anti-apoptotic protein that promotes resistance to paclitaxel in different tumors. Obatoclax, a BH3 mimetic of the Bcl-2 family of proteins, antagonizes Mcl-1 and hence may reverse paclitaxel resistance in Mcl-1-overexpressing tumors. In this study, paclitaxel-sensitive 5637 and -resistant HT1197 bladder cancer cells were treated with paclitaxel, obatoclax, or combinations of both. Apoptosis, cell cycle, and autophagy were measured by Western blot, flow cytometry, and fluorescence microscopy. Moreover, Mcl-1 expression was analyzed by immunohistochemistry in bladder carcinoma tissues. Our results confirmed that paclitaxel alone induced Mcl-1 downregulation and apoptosis in 5637, but not in HT1197 cells; however, combinations of obatoclax and paclitaxel sensitized HT1197 cells to the treatment. In obatoclax-treated 5637 and obatoclax + paclitaxel-treated HT1197 cells, the blockade of the autophagic flux correlated with apoptosis and was associated with caspase-dependent cleavage of beclin-1. Obatoclax alone delayed the cell cycle in 5637, but not in HT1197 cells, whereas combinations of both retarded the cell cycle and reduced mitotic slippage. In conclusion, obatoclax sensitizes HT1197 cells to paclitaxel-induced apoptosis through the blockade of the autophagic flux and effects on the cell cycle. Furthermore, Mcl-1 is overexpressed in many invasive bladder carcinomas, and it is related to tumor progression, so Mcl-1 expression may be of predictive value in bladder cancer.

Funder

Instituto de Salud Carlos III

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3