Ag/Au Bimetallic Nanoparticles Trigger Different Cell Death Pathways and Affect Damage Associated Molecular Pattern Release in Human Cell Lines

Author:

Katifelis HectorORCID,Nikou Maria-Paraskevi,Mukha Iuliia,Vityuk Nadiia,Lagopati Nefeli,Piperi ChristinaORCID,Farooqi Ammad AhmadORCID,Pippa Natassa,Efstathopoulos Efstathios P.ORCID,Gazouli MariaORCID

Abstract

Apoptosis induction is a common therapeutic approach. However, many cancer cells are resistant to apoptotic death and alternative cell death pathways including pyroptosis and necroptosis need to be triggered. At the same time, danger signals that include HMGB1 and HSP70 can be secreted/released by damaged cancer cells that boost antitumor immunity. We studied the cytotoxic effects of AgAu NPs, Ag NPs and Au NPs with regard to the programmed cell death (apoptosis, necroptosis, pyroptosis) and the secretion/release of HSP70 and HMGB1. Cancer cell lines were incubated with 30, 40 and 50 μg/mL of AgAu NPs, Ag NPs and Au NPs. Cytotoxicity was estimated using the MTS assay, and mRNA fold change of CASP1, CASP3, BCL-2, ZPB1, HMGB1, HSP70, CXCL8, CSF1, CCL20, NLRP3, IL-1β and IL-18 was used to investigate the associated programmed cell death. Extracellular levels of HMGB1 and IL-1β were investigated using the ELISA technique. The nanoparticles showed a dose dependent toxicity. Pyroptosis was triggered for LNCaP and MDA-MB-231 cells, and necroptosis for MDA-MB-231 cells. HCT116 cells experience apoptotic death and show increased levels of extracellular HMGB1. Our results suggest that in a manner dependent of the cellular microenvironment, AgAu NPs trigger mixed programmed cell death in P53 deficient MDA-MB-231 cells, while they also trigger IL-1β release in MDA-MB-231 and LNCaP cells and release of HMGB1 in HCT116 cells.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3