Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients

Author:

Ko Ryoung-Eun1,Kim Zero23,Jeon Bomi2,Ji Migyeong2,Chung Chi Ryang14ORCID,Suh Gee Young15,Chung Myung Jin23,Cho Baek Hwan67ORCID

Affiliation:

1. Department of Critical Care Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

2. Medical AI Research Center, Samsung Medical Center, Seoul 06351, Republic of Korea

3. Department of Data Convergence and Future Medicine, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea

4. Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea

5. Devision of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea

6. Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13497, Republic of Korea

7. Institute of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13497, Republic of Korea

Abstract

Background: Cancer patients who are admitted to hospitals are at high risk of short-term deterioration due to treatment-related or cancer-specific complications. A rapid response system (RRS) is initiated when patients who are deteriorating or at risk of deteriorating are identified. This study was conducted to develop a deep learning-based early warning score (EWS) for cancer patients (Can-EWS) using delta values in vital signs. Methods: A retrospective cohort study was conducted on all oncology patients who were admitted to the general ward between 2016 and 2020. The data were divided into a training set (January 2016–December 2019) and a held-out test set (January 2020–December 2020). The primary outcome was clinical deterioration, defined as the composite of in-hospital cardiac arrest (IHCA) and unexpected intensive care unit (ICU) transfer. Results: During the study period, 19,739 cancer patients were admitted to the general wards and eligible for this study. Clinical deterioration occurred in 894 cases. IHCA and unexpected ICU transfer prevalence was 1.77 per 1000 admissions and 43.45 per 1000 admissions, respectively. We developed two models: Can-EWS V1, which used input vectors of the original five input variables, and Can-EWS V2, which used input vectors of 10 variables (including an additional five delta variables). The cross-validation performance of the clinical deterioration for Can-EWS V2 (AUROC, 0.946; 95% confidence interval [CI], 0.943–0.948) was higher than that for MEWS of 5 (AUROC, 0.589; 95% CI, 0.587–0.560; p < 0.001) and Can-EWS V1 (AUROC, 0.927; 95% CI, 0.924–0.931). As a virtual prognostic study, additional validation was performed on held-out test data. The AUROC and 95% CI were 0.588 (95% CI, 0.588–0.589), 0.890 (95% CI, 0.888–0.891), and 0.898 (95% CI, 0.897–0.899), for MEWS of 5, Can-EWS V1, and the deployed model Can-EWS V2, respectively. Can-EWS V2 outperformed other approaches for specificities, positive predictive values, negative predictive values, and the number of false alarms per day at the same sensitivity level on the held-out test data. Conclusions: We have developed and validated a deep learning-based EWS for cancer patients using the original values and differences between consecutive measurements of basic vital signs. The Can-EWS has acceptable discriminatory power and sensitivity, with extremely decreased false alarms compared with MEWS.

Funder

Korean government

Samsung Medical Center

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3