Abstract
This paper introduces and investigates a new design method that employs both teeth arrangement and pole–slot combination to reduce the detent force of permanent magnet linear synchronous motors (PMLSMs) for precision position control. The proposed topology is a 10-pole, 12-slot-based PMLSM comprising two sections that significantly reduce the detent force without implementing a skewing design. It was analytically and experimentally confirmed that the proposed design effectively reduces detent force with a negligible sacrifice of mover length. The general characteristics and servo performance of the proposed PMLSM were experimentally examined and then discussed.
Funder
Korea Electrotechnology Research Institute
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献