Test and Numerical Model of Curved Steel–Concrete Composite Box Beams under Positive Moments

Author:

Liu Zhi-Min,Huo Xue-Jin,Wang Guang-Ming,Ji Wen-Yu

Abstract

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Tests of Curved Steel-Concrete Composite Beams

2. Multiple Configuration Curved Bridge Model Studies

3. Experimental study on steel-concrete composite beams curved in plan

4. Load Rating of Composite Steel Curved I-Girder Bridges through Load Testing with Heavy Trucks;Krzmarzick,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation on composite girders with CSW-CFST truss chords subjected to combined flexure and torsion;Advances in Structural Engineering;2023-03-16

2. State-of-the-art and annual progress of bridge engineering in 2021;Advances in Bridge Engineering;2022-12-30

3. Optimization design on the section of curved composite box beam bridges;Structural Concrete;2022-05-27

4. Parameter and sensitivity reliability analysis of curved composite box beam;Mechanics Based Design of Structures and Machines;2021-12-28

5. Spatial refinement grillage model of box-girder bridges;Mechanics Based Design of Structures and Machines;2021-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3