Development of a Composite from TPS–EVOH–SBR Reinforced with Coconut Fiber

Author:

Meráz-Rivera Jonathan,Cruz-Rivero LidiliaORCID,Méndez-Hernández María Leonor,Rivera-Armenta José LuisORCID,Angeles-Herrera Daniel,Ramírez-López Citlally

Abstract

The aim of this research is to obtain a composite made of coconut fiber, thermoplastic starch (TPS), ethylene vinyl alcohol (EVOH), and styrene–butadiene copolymer (SBR), achieving the most significant criteria/attribute determined by users. The tools used were quality function deployment (QFD) and the theory of inventive problem solving (TRIZ). The end result indicated that the quality requirement and most representative attribute for users is the toxicity of the material. Four mixtures were made with different percentages of coconut fiber, TPS–EVOH, and SBR, subjecting them to Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). The material obtained complies with the requirements of the Food and Drug Administration (FDA) regarding the nontoxicity of synthetic materials (EVOH and SB) to be used in contact with food (packaging and packaging). The spectra IR of the presence of monomers such as methacrylic acid, 2-hydroxyethyl acrylate, itaconic acid, among others, was not detected due to the humidity of the material. On the other hand, the DMA graphs showed that the mixtures achieved high storage modules (from 1500 to 3000 MPa) at temperatures from −90 to −70 °C, and the TGA thermogram showed that the last material to degrade was SBR at temperatures from 400 to 500 °C.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference31 articles.

1. Green Bioplastics as Part of a Circular Bioeconomy

2. Improving Markets for Recycled Plastics

3. Commercial Applications of Bioplastics

4. Applications for Bioplastics https://www.european-bioplastics.org/market/applications-sectors/

5. Bioplastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3