Experimental Study on the Effect of Heat-Retaining and Diversion Facilities on Thermal Discharge from a Power Plant

Author:

Hao Ruixia,Qiao Liyuan,Han Lijuan,Tian Chun

Abstract

In order to reduce the influence of thermal discharge from the power plant on the surrounding water environment and the operation efficiency of the power plant, a distorted physical model was presented and applied to Huadian Kemen Power Plant for studying heat transport and analyzing the effects of heat-retaining and diversion facilities near the intake/outlet on the thermal discharge for six scenarios. Field investigations were also used to validate the model. This study is unique as it is the first to elaborate on the impact of heat-retaining and diversion facilities on thermal discharge. The results indicate that the construction of heat-retaining and diversion facilities can decrease the excess temperature at intake to meet the intake requirement and improve the distribution of low temperature rise, but the area of high temperature rise has an increase. When the heat-retaining wall and diversion dike were constructed, the maximum intake temperature rise of Phase III decreased significantly by 1.0–1.3 °C with an average decrease of 0.2 °C, and the maximum value of Phase I and II was reduced by 0.3 °C with little mean change. A comparative experiment with different construction heights was also conducted. Result analysis shows that when the crest elevation was reduced from 3 to 2 m, the influence on the intake temperature rise of Phase I and II could be ignored, and the average temperature rise of Phase III only had an increase of 0.1 °C, suggesting that constructions with 2 m play an effective role in reducing heat return to the intake.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3