Experimental Study on Ratio Optimization of Similar Materials for Underground Mining of Shendong Coalfield: A Case Study of Shangwan Coal Mine

Author:

Yang Yingming1,Yue Hao2,Zhao Yongqiang1,Zhang Shen2,Zhang Jian2,Wang Zhaohui2ORCID,Yang Wenqiang3

Affiliation:

1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, National Institute of Clean and Low Carbon Energy, Beijing 102209, China

2. School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

3. China Construction Communications Engineering Group Co., Ltd., Beijing 100166, China

Abstract

Physical simulation is one of the effective methods to study mining problems, but the selection and proportion of simulation materials are greatly affected by the regional environment. This paper is based on a multilevel orthogonal design test scheme using sand, lime, and gypsum as the materials in the Shangwan coal mine in the Shendong coalfield, with the sand to cement ratio, paste to ash ratio, and maintenance days as variables. The effect of the polar difference method on the strength and density of gypsum was used as a reference for physical simulation in the Shendong coalfield. The sensitivity analysis of each factor was carried out by the polar difference method, and the influencing factors on density were, in descending order, sand to mortar ratio, mortar to ash ratio, and the number of maintenance days; the influencing factors on strength were, in descending order, mortar to ash ratio, maintenance days, and sand to mortar ratio. The sand cement ratio was negatively correlated with strength and density, the paste to ash ratio was positively correlated with strength and density, and the number of maintenance days was positively correlated with strength and negatively correlated with density. The multivariate non-linear regression analysis of sand to cement ratio and paste to ash ratio identified similar material proportioning test equations for the Shendong coalfield, which can improve the accuracy of physical simulation and be used to guide physical simulation experiments in the Shendong coalfield.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei

State Key Laboratory of Coal Mining Water Conservation and Utilization

China Energy Investment Corporation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3