Simulation-Based Design and Optimization of Accelerometers Subject to High-Temperature and High-Impact Loads

Author:

Li Ji,Tian Yaling,Dan Junjie,Bi Zhuming,Zheng Jinhui,Li Bailin

Abstract

Due to multi-factor coupling behavior, the performance evaluation of an accelerometer subject to high-temperature and high-impact loads poses a significant challenge during its design phase. In this paper, the simulation-based method is applied to optimize the design of the accelerometer. The proposed method can reduce the uncertainties and improve the fidelity of the simulation in the sense that (i) the preloading conditions of fasteners are taken into consideration and modeled in static analysis; (ii) all types of loadings, including bolt preloads, thermal loads, and impact loads, are defined in virtual dynamic prototype of the accelerometer. It is our finding that from static and dynamic analysis, an accelerometer is exposed to the risk of malfunction and even a complete failure if the temperature rises to a certain limit; it has been proved that the thermal properties of sensing components are the most critical factors for an accelerometer to achieve its desired performance. Accordingly, we use a simulation-based method to optimize the thermal expansion coefficient of the sensing element and get the expected design objectives.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Development of the technique of high shock test on hard-target penetration weapons and high-g accelerometer at abroad;Song;Meas. Control Technol.,2002

2. An inertia switch structure design based on the computer simulation;Shang;J. Detect. Control,2004

3. Sensitivity-Compensated Micro-Pressure Flexible Sensor for Aerospace Vehicle

4. Study of Sensitive Parameters on the Sensor Performance of a Compression-Type Piezoelectric Accelerometer Based on the Meta-Model

5. High-Temperature Piezoelectric Sensing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3