Accuracy Improvement of High-Resolution Wide-Swath Spaceborne Synthetic Aperture Radar Imaging with Low Pule Repetition Frequency

Author:

Wang Xiaofeng12,Ruan Yaduan1,Zhang Xinggan1

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

2. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China

Abstract

For a single-channel spaceborne synthetic aperture radar (SAR), the usage of a low pulse repetition frequency (PRF) is an effective technical way to extend the range swath. The sub-aperture imaging strategy is usually used to solve the problem of azimuth spectrum aliasing under the condition of a low PRF. However, the required up-sampling processing before the coherent synthesis of sub-images will lead to spectrum discontinuity between adjacent sub-images, which leads to an obvious grating lobe phenomenon after the process of sub-image synthesis, resulting in a significant decrease in image quality. For this issue, a high-resolution wide-swath (HRWS) imaging algorithm for a spaceborne SAR with a low PRF is proposed in this paper based on optimal spectrum shift processing. First, each sub-aperture is imaged using the typical range migration algorithm (RMA), and then all sub-images are up-sampled at the same time. Then, based on the criterion of the minimum grating lobe, the optimal spectrum shift is estimated. Finally, the spectrum of all sub-images is shifted and then all the shifted sub-images are synthesized coherently. The simulation data processing results verify the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3