Inshore Ship Detection Based on Multi-Modality Saliency for Synthetic Aperture Radar Images

Author:

Chen Zhe1,Ding Zhiquan1,Zhang Xiaoling2,Wang Xiaoting1,Zhou Yuanyuan1

Affiliation:

1. Multisensor Intelligent Detection and Recognition Technologies R&D Center of CASC, Chengdu 610100, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610097, China

Abstract

Synthetic aperture radar (SAR) ship detection is of significant importance in military and commercial applications. However, a high similarity in intensity and spatial distribution of scattering characteristics between the ship target and harbor facilities, along with a fuzzy sea-land boundary due to the strong speckle noise, result in a low detection accuracy and high false alarm rate for SAR ship detection with complex inshore scenes. In this paper, a new inshore ship detection method based on multi-modality saliency is proposed to overcome these challenges. Four saliency maps are established from different perspectives: an ocean-buffer saliency map (OBSM) outlining more accurate coastline under speckle noises; a local stability saliency map (LSSM) addressing pixel spatial distribution; a super-pixel saliency map (SPSM) extracting critical region-based features for inshore ship detection; and an intensity saliency map (ISM) to highlight target pixels with intensity distribution. By combining these saliency maps, ship targets in complex inshore scenes can be successfully detected. The method provides a novel interdisciplinary perspective (surface metrology) for SAR image segmentation, discovers the difference in spatial characteristics of SAR image elements, and proposes a novel robust CFAR procedure for background clutter fitting. Experiments on a public SAR ship detection dataset (SSDD) shows that our method achieves excellent detection performance, with a low false alarm rate, in offshore scenes, inshore scenes, inshore scenes with confusing metallic port facilities, and large-scale scenes. The results outperform several widely used methods, such as CFAR-based methods and super-pixel methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3