Abstract
An information retrieval (IR) system is the core of many applications, including digital library management systems (DLMS). The IR-based DLMS depends on either the title with keywords or content as symbolic strings. In contrast, it ignores the meaning of the content or what it indicates. Many researchers tried to improve IR systems either using the named entity recognition (NER) technique or the words’ meaning (word sense) and implemented the improvements with a specific language. However, they did not test the IR system using NER and word sense disambiguation together to study the behavior of this system in the presence of these techniques. This paper aims to improve the information retrieval system used by the DLMS by adding the NER and word sense disambiguation (WSD) together for the English and Arabic languages. For NER, a voting technique was used among three completely different classifiers: rules-based, conditional random field (CRF), and bidirectional LSTM-CNN. For WSD, an examples-based method was used to implement it for the first time with the English language. For the IR system, a vector space model (VSM) was used to test the information retrieval system, and it was tested on samples from the library of the University of Kufa for the Arabic and English languages. The overall system results show that the precision, recall, and F-measures were increased from 70.9%, 74.2%, and 72.5% to 89.7%, 91.5%, and 90.6% for the English language and from 66.3%, 69.7%, and 68.0% to 89.3%, 87.1%, and 88.2% for the Arabic language.
Subject
Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems
Reference48 articles.
1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition;Jurafsky,2008
2. Transfer Learning for Arabic Named Entity Recognition With Deep Neural Networks
3. A survey of named entity recognition and classification
4. Anersys: An Arabic named entity recognition system based on maximum entropy;Benajiba,2007
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献