NERWS: Towards Improving Information Retrieval of Digital Library Management System Using Named Entity Recognition and Word Sense

Author:

Aliwy Ahmed,Abbas AyadORCID,Alkhayyat Ahmed

Abstract

An information retrieval (IR) system is the core of many applications, including digital library management systems (DLMS). The IR-based DLMS depends on either the title with keywords or content as symbolic strings. In contrast, it ignores the meaning of the content or what it indicates. Many researchers tried to improve IR systems either using the named entity recognition (NER) technique or the words’ meaning (word sense) and implemented the improvements with a specific language. However, they did not test the IR system using NER and word sense disambiguation together to study the behavior of this system in the presence of these techniques. This paper aims to improve the information retrieval system used by the DLMS by adding the NER and word sense disambiguation (WSD) together for the English and Arabic languages. For NER, a voting technique was used among three completely different classifiers: rules-based, conditional random field (CRF), and bidirectional LSTM-CNN. For WSD, an examples-based method was used to implement it for the first time with the English language. For the IR system, a vector space model (VSM) was used to test the information retrieval system, and it was tested on samples from the library of the University of Kufa for the Arabic and English languages. The overall system results show that the precision, recall, and F-measures were increased from 70.9%, 74.2%, and 72.5% to 89.7%, 91.5%, and 90.6% for the English language and from 66.3%, 69.7%, and 68.0% to 89.3%, 87.1%, and 88.2% for the Arabic language.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference48 articles.

1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition;Jurafsky,2008

2. Transfer Learning for Arabic Named Entity Recognition With Deep Neural Networks

3. A survey of named entity recognition and classification

4. Anersys: An Arabic named entity recognition system based on maximum entropy;Benajiba,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Generative AI in Short Document Indexing;Electronics;2024-09-08

2. A survey on Named Entity Recognition — datasets, tools, and methodologies;Natural Language Processing Journal;2023-06

3. Generating Muslim Name using Character-Level Language Model in Deep Learning;2023 International Conference on Smart Computing and Application (ICSCA);2023-02-05

4. Construction IPT data set: An Iraqi social media political dataset;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

5. A survey on deep reinforcement learning architectures, applications and emerging trends;IET Communications;2022-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3