Semantic Trajectory Analytics and Recommender Systems in Cultural Spaces

Author:

Angelis SotirisORCID,Kotis KonstantinosORCID,Spiliotopoulos DimitrisORCID

Abstract

Semantic trajectory analytics and personalised recommender systems that enhance user experience are modern research topics that are increasingly getting attention. Semantic trajectories can efficiently model human movement for further analysis and pattern recognition, while personalised recommender systems can adapt to constantly changing user needs and provide meaningful and optimised suggestions. This paper focuses on the investigation of open issues and challenges at the intersection of these two topics, emphasising semantic technologies and machine learning techniques. The goal of this paper is twofold: (a) to critically review related work on semantic trajectories and knowledge-based interactive recommender systems, and (b) to propose a high-level framework, by describing its requirements. The paper presents a system architecture design for the recognition of semantic trajectory patterns and for the inferencing of possible synthesis of visitor trajectories in cultural spaces, such as museums, making suggestions for new trajectories that optimise cultural experiences.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3