Comparative Application of Rain Gauge, Ground- and Space-Borne Radar Precipitation Products for Flood Simulations in a Dam Watershed in South Korea

Author:

Cho Younghyun1ORCID

Affiliation:

1. K-water Research Institute, K-water (Korea Water Resources Corporation), Daejeon 34045, Republic of Korea

Abstract

This study presents a comparative analysis of flood simulations using rain gauge, ground- and space-borne radar precipitation products. The objectives are to assess the effectiveness of two radar-based data sources, namely the Radar-AWS Rainrates (RAR) and Integrated Multi-satellite Retrievals for GPM (IMERG), in a dam watershed with gauge observations, and explore the modeling feasibility of integrating the half-hourly IMERG satellite precipitation in regions with ungauged or limited observational area. Two types of HEC-HMS models were developed, considering areal-averaged and spatially distributed gridded data simulations utilizing eight selected storm events. The findings indicate that the RAR data, although slightly underestimate precipitation compared to the gauge measurements, accurately reproduce hydrographs without requiring parameter adjustments (Nash–Sutcliffe efficiency, ENS, 0.863; coefficient of determination, R2, 0.873; and percent bias, PBIAS, 7.49%). On the other hand, flood simulations using the IMERG data exhibit lower model efficiency and correlation, suggesting potential limitations in ungauged watersheds. Nevertheless, with available discharge data, the calibrated model using IMERG shows prospects for utilization (ENS 0.776, R2 0.787, and PBIAS 7.15%). Overall, this research offers insights into flood simulations using various precipitation products, emphasizing the significance of reliable discharge data for accurate hydrological modeling and the need for further evaluation of the IMERG product.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3