Abstract
The uncertainty and intermittency of the available wind resource in nature would potentially cause wind generation curtailment when the flexibility of the integrated power grid is limited, especially in small-scale microgrids for islands. In this paper, an optimal configuration method is proposed to use thermal energy storage (TES) to relieve wind generation curtailment in an island microgrid. The thermal network is modeled along with the electrical network to utilize its regulation capability, while TES is introduced as an additional flexibility resource. The detailed cost models of combined heat and power (CHP) units and TES are presented to realize the objective of minimizing the overall operating cost. The performance of TES in improving wind power utilization is firstly validated by using an electrical boiler (EB) as a benchmark and further analyzed under different scenarios considering the growths of wind power capacity, electrical load, and heat load. The effectiveness of the proposed method is validated using real-world data obtained from the practical island microgrid.
Funder
National Key Research and Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献