Antioxidant Activities in Kenaf (Hibiscus cannabinus) Shoots during Growth Stages and Destination of Chlorogenic Acid and Kaempferol Glycosides

Author:

Duan Shucheng1ORCID,Kwon Soon-Jae2ORCID,Jeong Da Yun3,Kim Ji Hye1ORCID,Park You Rang1,Kim Chang Kyu1,Kim Jae-Hee1,Eom Seok Hyun13ORCID

Affiliation:

1. Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea

2. Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea

3. Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

Apart from being utilized as a commercial fiber at maturity, kenaf shoots have potential as a food and feed source because of their diverse bioactivities. Previous studies have focused on mature stems because of their high biomass, whereas the antioxidant activities (AA) and the destination of AA contributors of kenaf stems and their high-yielding byproduct leaves during the growth stage have rarely been studied. Therefore, we investigated changes in AA and its relative components in kenaf leaves and stems during the four vital growth stages. Higher ABTS radical cation and DPPH radical scavenging abilities and ferric reducing antioxidant power, total phenolic content, total flavonoid content, and total polysaccharide content were observed at all leaf stages and in the late stem stages. Chlorogenic acid (CGA) and kaempferol glycosides, especially kaempferitrin (Kfr), were identified as representative phenolic acids and flavonoids in both kenaf leaves and stems. The content of CGA in both leaves and stems increased corresponding to the plant’s growth stage, whereas kaempferol glycosides were enhanced in leaves but declined in stems. The highest correlation was observed between TPC and AA in all organs. Further evaluation of CGA and Kfr verified that CGA was the predominant contributor to AA, surpassing Kfr. These findings suggest that kenaf leaves increase antioxidant levels as they grow and can be a useful source of stem harvesting byproducts.

Funder

National Research Foundation of Korea

Korea Atomic Energy Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3