Building a Human Ovarian Antioxidant ceRNA Network “OvAnOx”: A Bioinformatic Perspective for Research on Redox-Related Ovarian Functions and Dysfunctions

Author:

Tatone Carla1ORCID,Di Emidio Giovanna1ORCID,Battaglia Rosalia2ORCID,Di Pietro Cinzia2ORCID

Affiliation:

1. Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

2. Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy

Abstract

The ovary is a major determinant of female reproductive health. Ovarian functions are mainly related to the primordial follicle pool, which is gradually lost with aging. Ovarian aging and reproductive dysfunctions share oxidative stress as a common underlying mechanism. ROS signaling is essential for normal ovarian processes, yet it can contribute to various ovarian disorders when disrupted. Therefore, balance in the redox system is crucial for proper ovarian functions. In the present study, by focusing on mRNAs and ncRNAs described in the ovary and taking into account only validated ncRNA interactions, we built an ovarian antioxidant ceRNA network, named OvAnOx ceRNA, composed of 5 mRNAs (SOD1, SOD2, CAT, PRDX3, GR), 10 miRNAs and 5 lncRNAs (XIST, FGD5-AS1, MALAT1, NEAT1, SNHG1). Our bioinformatic analysis indicated that the components of OvAnOx ceRNA not only contribute to antioxidant defense but are also involved in other ovarian functions. Indeed, antioxidant enzymes encoded by mRNAs of OvAnOx ceRNA operate within a regulatory network that impacts ovarian reserve, follicular dynamics, and oocyte maturation in normal and pathological conditions. The OvAnOx ceRNA network represents a promising tool to unravel the complex dialog between redox potential and ovarian signaling pathways involved in reproductive health, aging, and diseases.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3