Arctigenin from Fructus arctii Exhibits Antiaging Effects via Autophagy Induction, Antioxidative Stress, and Increase in Telomerase Activity in Yeast

Author:

Chen Siqi1,Li Yajing2,Wu Enchan2,Li Qing1ORCID,Xiang Lan2ORCID,Qi Jianhua2

Affiliation:

1. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

2. College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China

Abstract

Aging is often accompanied by irreversible decline in body function, which causes a large number of age-related diseases and brings a huge economic burden to society and families. Many traditional Chinese medicines have been known to extend lifespan, but it has still been a challenge to isolate a single active molecule from them and verify the mechanism of anti-aging action. Drugs that inhibit senescence-associated secretory phenotypes (SASPs) are called “senomorphics”. In this study, arctigenin (ATG), a senomorphic, was screened from the Chinese medicine Fructus arctii using K6001 yeast replicative lifespan. Autophagy, oxidative stress, and telomerase activity are key mechanisms related to aging. We found that ATG may act through multiple mechanisms to become an effective anti-aging molecule. In exploring the effect of ATG on autophagy, it was clearly observed that ATG significantly enhanced autophagy in yeast. We further verified that ATG can enhance autophagy by targeting protein phosphatase 2A (PP2A), leading to an increased lifespan. Meanwhile, we evaluated the antioxidant capacity of ATG and found that ATG increased the activities of the antioxidant enzymes, thereby reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels to improve the survival of yeast under oxidative stress. In addition, ATG was able to increase telomerase activity by enhancing the expression of EST1, EST2, and EST3 genes in yeast. In conclusion, ATG exerts anti-aging effects through induction of autophagy, antioxidative stress, and enhancement of telomerase activity in yeast, which is recognized as a potential molecule with promising anti-aging effects, deserving in-depth research in the future.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3