Direct Enantiomeric Resolution of Seventeen Racemic 1,4-Dihydropyridine-Based Hexahydroquinoline Derivatives by HPLC

Author:

Sun Jiayi,Gözde Gündüz MiyaseORCID,Zhang JunyuanORCID,Yu Jia,Guo Xingjie

Abstract

1,4-Dihydropyridine (DHP) scaffold holds an outstanding position with its versatile pharmacological properties among all heterocyclic compounds. Although most of the commercially available DHPs are marketed as a racemic mixture, the chiral center at C-4 can lead to even opposite pharmacological activities between the enantiomers. In the present study, enantioseparation of seventeen DHP structural analogues, consisting of either pharmacologically active or newly synthesized derivatives, (M2-4, MD5, HM2, HM10, CE5, N11, N10, N7, M11, MC6-8, MC13, MD23, and 42IIP) by high-performance liquid chromatography was investigated using immobilized polysaccharide-based chiral stationary phase, Chiralpak IC column. Due to the solvent versatility of the covalently immobilized chiral stationary phase in enantiomer separation, multiple elution modes including standard normal phase, nonstandard mobile phase, and reversed phase were used to expand the possibility to find the optimum enantioselective conditions for the tested analytes. Under appropriate separation conditions, complete enantiomeric separation was obtained for nearly all compounds except MC6-8 and MC13 which contained two chiral centers. Additionally, the effects of the polar modifier, the additive, and column temperature on the chiral recognition were evaluated. The thermodynamic parameters calculated according to the linear van’t Hoff equation indicated that the chiral separations in this study were enthalpy-driven or entropy-driven. Some parameters of method validation such as linearity, limit of quantitation, and repeatability were also measured for all studied compounds to prove the reliability of the method.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Liaoning Provincial Education Department of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3