Author:
Song Chengwei,Lu Liang,Guo Yayu,Xu Huimin,Li Ruili
Abstract
Transgenic technology is a powerful tool for gene functional characterization, and poplar is a model system for genetic transformation of perennial woody plants. However, the poplar genetic transformation system is limited to a number of model genotypes. Herein, we developed a transformation system based on efficient Agrobacterium-mediated transformation for the hybrid poplar Populus Alba × Populus glandulosa Uyeki, which is a fast-growing poplar species that is suitably grown in the northern part of China. Importantly, we optimized many independent factors and showed that the transformation efficiency was improved significantly using juvenile leaf explants. Explants were infected by an Agrobacterium suspension with the OD600 = 0.6 for 15 min and then co-cultured in dark conditions for 3 days. Using the improved transformation system, we obtained the transgenic poplar with overexpression of β-glucuronidase (GUS) via direct organogenesis without callus induction. Furthermore, we analyzed the GUS gene in the transgenic poplars using PCR, qRT-PCR, and GUS staining. These analyses revealed that the GUS gene was efficiently transformed, and it exhibited various expression levels. Taken together, these results represent a simple, fast, and efficient transformation system of hybrid poplar plants. Our findings may facilitate future studies of gene functions in perennial woody plants and tree breeding via transgenic technology assisted design.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Program of Introducing Talents of Discipline to Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献