Hydrogeophysical and Hydrochemical Assessment of the Northeastern Coastal Aquifer of Egypt for Desalination Suitability

Author:

Abdelfattah Mohamed1ORCID,Abu-Bakr Heba Abdel-Aziz2,Mewafy Farag M.3ORCID,Hassan Taher Mohammed2,Geriesh Mohamed H.4,Saber Mohamed5ORCID,Gaber Ahmed1ORCID

Affiliation:

1. Geology Department, Faculty of Science, Port Said University, Port Said 42522, Egypt

2. Research Institute for Groundwater, National Water Research Centre, Cairo 13621, Egypt

3. Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK 74078, USA

4. Geology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt

5. Water Resources Research Center, Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan

Abstract

Recently the limited freshwater resources have become one of the most significant challenges facing Egypt. Thus, new resources of drinkable water are required to meet the growing population demands and the national projects, to support the country’s economy. Saline groundwater desalination is an option that can support limited freshwater resources. This research represents a detailed analysis of hydrogeological and hydrochemical characteristics of a coastal aquifer in the West Port Said area, northeastern Egypt, to assess the desalination suitability of the aquifer, especially when the nearby seawater is contaminated. The hydrogeological characterization included various integrated approaches: geophysical survey, field investigations, wells drilling, well logging, pumping tests, and water sampling. The results show that: (1) The subsurface lithology consists of sandstone and clay, and three water bearing layers: A, B and C. (2) The average porosity values are 22%, 27.5%, and 25% for layers A, B, and C, respectively. The hydraulic conductivity values fall in the ranges of 5.8–12.7 m/day for layer A, 7.6–11.7 m/day for layer B, and 11.1–19.5 m/day for layer C, while the highest transmissivity values are in ranges of 5.8 × 102–12.7 × 102 m2/day for layer A, 7.6 × 102–11.7 × 102 m2/day for layer B and 11.1 × 102–19.5 × 102 m2/day for layer C. (3) The average storage values are 2.1 × 10−3, 1.8 × 10−3 and 5.3 × 10−3 in layers A, B and C, respectively. (4) Layers A and B showed Na-Cl-type, similar to seawater, but free from oil pollution. These results show layer B’s higher productivity and better quality. Despite the salinity, desalination technology can improve.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3