Assignment Approach for Electric Vehicle Charging Using Traffic Data Collected by SUMO

Author:

Farhani Riham12ORCID,El Hillali Yassin1,Rivenq Atika1,Boughaleb Yahia23,Hajjaji Abdelowahed2

Affiliation:

1. Laboratory Institute of Electronics, Microelectronics and Nanotechnology—IEMN, UPHF, 59300 Valenciennes, France

2. Laboratory of Engineering Sciences for Energy ENSA, El Jadida 24000, Morocco

3. University Hassan II. ENS—Casablanca, Casablanca 20000, Morocco

Abstract

Consumption habits are changing due to the development of new technologies around renewable energy, environmental awareness, and new incentive policies. Smart grids are seen as an effective way to accommodate more renewable energy, achieve better control of demand, and improve the operating conditions of the electrical system. However, electric vehicles, which are an environmentally friendly alternative, have very high market penetration and require efficient electrical management at charging stations. Among the factors that have a significant impact on electrical energy consumption are traffic conditions, which can seriously impact the efficiency of electric vehicles. Therefore, the focus is on developing charging infrastructure and reducing vehicle waiting time by optimally allocating electric vehicles to charging stations. To this end, an optimization approach is presented, based on the traffic conditions collected by the SUMO simulator. This approach enables each vehicle to be assigned to the appropriate station while maintaining its battery state of charge at a higher level.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traffic Control System Using Adaptive Technique;2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech);2023-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3