Optimization of Quantum Noise in Space Gravitational-Wave Antenna DECIGO with Optical-Spring Quantum Locking Considering Mixture of Vacuum Fluctuations in Homodyne Detection

Author:

Tsuji Kenji1ORCID,Ishikawa Tomohiro1ORCID,Komori Kentaro23,Nagano Koji4,Enomoto Yutaro5ORCID,Michimura Yuta26,Umemura Kurumi1,Shimizu Ryuma1,Wu Bin1ORCID,Iwaguchi Shoki1,Kawasaki Yuki1ORCID,Furusawa Akira57,Kawamura Seiji18ORCID

Affiliation:

1. Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan

2. Research Center for the Early Universe (RESCEU), School of Science, University of Tokyo, Tokyo 113-0033, Tokyo, Japan

3. Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Tokyo, Japan

4. LQUOM, Inc., Tokiwadai, Hodogaya, Yokohama 240-8501, Kanagawa, Japan

5. Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Tokyo, Japan

6. LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

7. Center for Quantum Computing, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan

8. The Kobayashi-Masukawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Aichi, Japan

Abstract

Quantum locking using optical spring and homodyne detection has been devised to reduce the quantum noise that limits the sensitivity of the DECIGO, a space-based gravitational-wave antenna in the frequency band around 0.1 Hz for the detection of primordial gravitational waves. The reduction in the upper limit of energy density ΩGW from 2×10−15 to 1×10−16, as inferred from recent observations, necessitates improved sensitivity in the DECIGO to meet its primary science goals. To accurately evaluate the effectiveness of this method, this paper considers a detection mechanism that takes into account the influence of vacuum fluctuations on homodyne detection. In addition, an advanced signal processing method is devised to efficiently utilize signals from each photodetector, and design parameters for this configuration are optimized for the quantum noise. Our results show that this method is effective in reducing quantum noise, despite the detrimental impact of vacuum fluctuations on its sensitivity.

Funder

JSPS KAKENHI

Murata Science Foundation

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference24 articles.

1. Observation of Gravitational Waves from a Binary Black Hole Merger;Abbott;Phys. Rev. Lett.,2016

2. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run;Abbott;Phys. Rev. X,2021

3. The third generation of gravitational wave observatories and their science reach;Punturo;Class. Quant. Grav.,2010

4. Gravitational wave detector with cosmological reach;Dwyer;Phys. Rev. D,2015

5. Amaro-Seoane, P., Audley, H., Babak, S., Baker, J., Barausse, E., Bender, P., Berti, E., Binetruy, P., Born, M., and Bortoluzzi, D. (2017). Laser Interferometer Space Antenna. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3