Profiling the Physical Performance of Young Boxers with Unsupervised Machine Learning: A Cross-Sectional Study

Author:

Merlo Rodrigo12ORCID,Rodríguez-Chávez Ángel1ORCID,Gómez-Castañeda Pedro E.23,Rojas-Jaramillo Andrés45ORCID,Petro Jorge L.46ORCID,Kreider Richard B.7ORCID,Bonilla Diego A.468ORCID

Affiliation:

1. Research Division, Dynamical Business & Science Society—DBSS International SAS, Leon 37530, Mexico

2. Colegio Profesional de Licenciados en Entrenamiento Deportivo (CPLED), Mexico City 03650, Mexico

3. Escuela Nacional de Entrenadores Deportivos, Comisión Nacional de Cultura Física y Deporte, Mexico City 08400, Mexico

4. Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia

5. Grupo de Investigación CINDA, Instituto Departamental de Deportes de Antioquia (INDEPORTES), Medellín 050034, Colombia

6. Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia

7. Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA

8. Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia

Abstract

Mexico City is the location with the largest number of boxers in Mexico; in fact, it is the first city in the country to open a Technological Baccalaureate in Education and Sports Promotion with a pugilism orientation. This cross-sectional study aimed to determine the physical–functional profile of applicants for admission to the baccalaureate in sports. A total of 227 young athletes (44F; 183M; 15.65 (1.79) years; 63.66 (14.98) kg; >3 years of boxing experience) participated in this study. Body mass (BM), maximal isometric handgrip (HG) strength, the height of the countermovement jump (CMJ), the velocity of straight boxing punches (PV), and the rear hand punch impact force (PIF) were measured. The young boxers were profiled using unsupervised machine learning algorithms, and the probability of superiority (ρ) was calculated as the effect size of the differences. K-Medoids clustering resulted in two sex-independent significantly different groups: Profile 1 (n = 118) and Profile 2 (n = 109). Except for BM, Profile 2 was statistically higher (p < 0.001) with a clear distinction in terms of superiority on PIF (ρ = 0.118), the PIF-to-BM ratio (ρ = 0.017), the PIF-to-HG ratio (ρ = 0.079) and the PIF-to-BM+HG ratio (ρ = 0.008). In general, strength levels explained most of the data variation; therefore, it is reasonable to recommend the implementation of tests aimed at assessing the levels of isometric and applied strength in boxing gestures. The identification of these physical–functional profiles might help to differentiate training programs during sports specialization of young boxing athletes.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Reference62 articles.

1. Proceso civilizatorio, violencia y deportes de combate; revisión integradora del boxeo vs artes marciales mixtas. [Civilizing process, violence, and combat sports; integrative review of boxing and mixed martial arts];Petro;RICYDE Rev. Int. Cienc. Deporte,2019

2. Amateur boxing: Physical and physiological attributes;Tabben;Sports Med.,2015

3. Merlo, R. (2014). La Preparación Física en el Boxeo, Rawson-Playa Union.

4. Assessment and Contributors of Punching Forces in Combat Sports Athletes;Lenetsky;Strength Cond. J.,2013

5. Direct Measurement of Punch Force During Six Professional Boxing Matches;Pierce;J. Quant. Anal. Sports,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3