Mesoporous TiO2 Implanted ZnO QDs for the Photodegradation of Tetracycline: Material Design, Structural Characterization and Photodegradation Mechanism

Author:

Iqbal AnwarORCID,Saidu Usman,Sreekantan SrimalaORCID,Ahmad Mohammad Norazmi,Rashid Marzaini,Ahmed Naser M.,Danial Wan HazmanORCID,Wilson Lee D.ORCID

Abstract

A sol-gel method was used to prepare a mesoporous TiO2 implanted with a ZnO quantum dot photocatalyst (TZQ) for the photodegradation of tetracycline (TC) under fluorescent light irradiation. Scanning electron microscopy (SEM) shows the presence of cavities on the photocatalyst surface due to the use of starch as a synthetic template, where the nitrogen sorption results indicate that TZQ contains mesopores with reduced size (ca. 4.3 nm) versus the pore size of the parent meso-TiO2 (ca. 7.5 nm). The addition of ZnO quantum dots (QDs) resulted in spherically-shaped binary composite particles in layers onto the surface of TiO2. The coexistence of the ZnO QDs and TiO2 phase was observed using high resolution-transmission electron microscopy (HR-TEM). The photodegradation of TC was carried out in a homemade reactor equipped with two fluorescent lights (24 W each) and within 90 min of irradiation, 94.6% of TC (40 mg L−1) was photodegraded using 250 mg L−1 of TZQ at pH 9. The major reactive oxygen species identified from the scavenging tests were O2●− followed by HO●. The deconvolution of the photoluminescence spectrum of TZQ indicates the presence of a strong quantum confinement effect (QCE) of the ZnO QDs, a defect related to Ti-species and oxygen. The analysis of the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS) suggest two photodegradation pathways. The pathways were validated using the Fukui function approach and the Wheland localisation approach. This simple and efficient photocatalytic technology is anticipated to benefit small-scale animal husbandries and aquaculture operators that have limited access to sustainable water treatment technology.

Funder

Government of Malaysia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3