Affiliation:
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
Abstract
All light or heavy water reactors fabricated with carbon steels suffer from flow-accelerated corrosion (FAC). The FAC degradation of SA106B with different flow velocities was investigated in terms of microstructure. As flow velocity increased, the major corrosion type changed from general corrosion to localized corrosion. Severe localized corrosion occurred in the pearlite zone, which can be the prior location for generating pits. After normalizing, the improvement in microstructure homogeneity reduced the oxidation kinetics and lowered cracking sensitivity, causing a decrease in FAC rates of 33.28%, 22.47%, 22.15%, and 17.53% at flow velocity of 0 m/s, 1.63 m/s, 2.99 m/s, and 4.34 m/s, respectively. Additionally, localized corrosion tendency was decreased by reducing the micro-galvanic effect and tensile stresses in oxide film. The maximum localized corrosion rate decreased by 21.7%, 13.5%, 13.8%, and 25.4% at flow velocity of 0 m/s, 1.63 m/s, 2.99 m/s, and 4.34 m/s, respectively.
Funder
Opening project fund of Materials Service Safety Assessment Facilities
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献