Geomechanical Characterization of Crushed Concrete–Rubber Waste Mixtures

Author:

Gabryś Katarzyna1ORCID

Affiliation:

1. Water Centre WULS, Warsaw University of Life Sciences—WULS, 6 Ciszewskiego Street, 02-787 Warsaw, Poland

Abstract

The present study investigates the dynamic and cyclic behavior of mixtures of waste materials, i.e., rigid anthropogenic mineral aggregates (RCA) mixed with recycled soft particles (RTW), based on a series of standard resonant column tests and cyclic torsional shear tests. The laboratory tests presented in this article are part of a larger research project that aims to provide useful insights to facilitate the application of RCA–RTW compositions as geotechnical materials. The impacts of various parameters including shear strain, mean effective stress, and, in particular, rubber content on the shear modulus (G), and damping ratio (D), are considered in detail. Rubber content is considered by the percentage of rubber in the mix weight. In general, the results show that as the RTW content increases, the shear modulus decreases while the damping ratio increases. The largest reduction in the G−modulus values occurs for the highest rubberized mix. The observed damping ratio for pure RCA is approx. three times lower versus rubber-reinforced specimens. The compliance of the behavior of the new RCA–RTW mixtures and pure recycled concrete waste tested under dynamic and cyclic loading is demonstrated. The effects of crushing of the RCA material itself during cyclic loading are visible, and dilution of this process due to the addition of rubber. Furthermore, the test data reveal that the values of the G−modulus and D−ratio at small and medium strain levels are considered independent of the time of vibration.

Funder

National Science Centre of Poland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3